Rabies situation in Eastern Europe
(a molecular epidemiological perspective)

Professor Anthony Fooks
Rabies and Wildlife Zoonoses Group
Veterinary Laboratories Agency – Weybridge (UK)
OIE Reference Laboratory for Rabies
World Health Organisation Communicable Disease Surveillance and Response Collaborating Centre for the characterisation of rabies and rabies-related viruses
This Is Not An Option Courtesy of Corrie Brown

Rabies is an under-reported disease

In a cohort of 133 children with CNS-related diseases
- 14 (10.5%) – rabies
- Three of 26 (11.5%) clinically diagnosed cases of cerebral malaria were laboratory-confirmed as rabies

Macpherson Mallewa,*† Anthony R. Fooks,‡
Daniel Banda,† Patrick Chikungwa,§
Limangeni Mankhambo,† Elizabeth Molyneux,†
Malcolm E. Molyneux,† and Tom Solomon*

In a malaria-endemic area of Africa, rabies was an important cause of fatal central nervous system infection, responsible for 14 (10.5%) of 133 cases. Four patients had unusual clinical manifestations, and rabies was only diagnosed post-mortem. Three (11.5%) of 26 fatal cases originally attributed to cerebral malaria were due to rabies.

What are the major risk factors in Europe?

- **Sylvatic rabies**
 - Foxes / raccoon-dogs likely to be serious problem
 - Emerging lyssaviruses – bats?
 1. Bat virus ➔ wildlife reservoir ➔ cat
 2. Other bat-adapted variants of rabies virus (gt.1)

- **Urban rabies**
 - Other imported carnivores (ferrets)

- **Accidental / deliberate release of imported wildlife**
 - Non-indigenous species
 1. Raccoon-dogs; raccoons (Germany!)
 - Agro-terrorism
 - Political instability
 - Complacency through lack of border control
Epidemiological situation of rabies in Europe

- **Vectors / reservoirs**
 - Red fox
 - Dog / cat
 - Raccoon dogs
 - Arctic foxes
 - Wolves
 - Badger!

- **European bat lyssavirus type-1**
 - *Eptesicus serotinus*; man; sheep; stone-marten, cat

- **European bat lyssavirus type-2**
 - *Myotis daubentonii / Myotis dascyneme*; man

- **Eurasia - ARAV, KHUV, IRKV, WCBV**
 - Aravan Virus - Kyrgyzstan (1991)
 - Lesser Mouse Eared bat (*Myotis blythi*)
 - Khujand – (Tajikistan 2001)
 - Whiskered bat (*Myotis mystacinus*)
 - Irkut - East Siberia (2002)
 - Greater tube-nosed bat (*Murina leucogaster*)
 - Western Caucasian bat virus – Krasnodar (2002)
 - Schreiber’s bat (*Miniopterus schreibersii*)

Bat rabies (1977 – 2007)

positive = 860
Bat rabies (1977 – 2007)

EBLV-2
EBLV-1a
EBLV-1b

Europe – Spread of fox rabies
Spread of rabies

- Dogs to Foxes (Western Russia / Poland)

- Foxes / Dogs to Raccoon Dogs (NE Europe)
- Dogs to foxes (Turkey)
- **No** evidence for bat spill-over / adaptation to a terrestrial mammal with sustained species – species transmission in Europe
- Evidence for occasional bat spill-over cases only
Rabies situation in Europe - 2008

RABIES CASES EUROPE
1st QUARTER 2008
3715 CASES REPORTED
2 BAT RABIES CASES INCLUDED
3 HUMAN RABIES CASES INCLUDED

- Rabies free (terrestrial rabies)
- No data
Impact of ORV on Rabies

1980-2007
Reasons for setbacks

- limited financial resources
- lack of long-term planning
- missing cross-border activities
- small-scale vaccination
- other disease priorities
- increasing fox densities
- inadequate bait distribution
- premature declaration of areas as being “rabies free”
- inferior adaptation of vaccination strategies
- decreasing awareness
- violation of elementary principles of rabies control
- absence of complementary measures
- no epidemiological analysis
- deficient surveillance
- cold-chain of vaccines
Species barrier: practical consequences

- Target the vector, not the victim
- To eliminate human rabies - dogs must be the principal target
 - Human rabies pre-immunization and prophylaxis provided in rabies-endemic regions
Destruction of ‘stray’ dogs

- Strategy provides short-term respite to the rabies problem
 - Ecological vacuum soon filled by naïve animals
- Lack of understanding between veterinary and medical authorities
 - Undertaken in response to human cases
- Vaccination of dogs preferential
 - Animal Birth Control (ABC)
- Population reduction
 - Not socially acceptable
 - Not economically viable
Oral vaccination of dogs

- Considered as a supplement to parenteral vaccination
- Could be applied on a larger scale
 - A tool of rabies control in dogs

Radial Tree of European RABV

N gene (400bp)

n=198
North East Europe (NEE) Isolates

Raccoon Dog, Fox, Badger, Dog, Cat, Polecat, Rat, Cow
East Europe (EE) Isolates

Serbia, Hungary, Bosnia, Montenegro, Bulgaria, Poland, & Czech Republic

Dog, cat, fox, horse, cattle, deer
Central Europe (CE) Isolates

Fox n=19, Raccoon Dog n=3, Water Rat n=1, Marten n=1
East
Turkey/Georgia/Russia
Fox n=4, Cow n=2
Dog n=2, Cat n=2
Human n=1, Wolf n=1
Close to Iranian isolates

West Turkey/Russia/Hungary
Dog n=8, Fox n=6, Human n=2
Intermediate Dog/Fox ?

North East
Turkey/Georgia
Dog n=2, Human n=1

Working for public and animal health
Serbia Fox Group

N East Serbia 1972-1977

N Serbia 1986-1997
FRY – Bovine isolates

RV1185 - Montenegro Bovine 1978
8658YOU - FRY Bovine 1981

Divergent Isolates – 100% bootstrap support
Epidemiology of Rabies in Balkan Peninsular

- FLI-Wusterhausen (Germany) | T Muller, C Freuling
- IDT (Germany) | A Vos
- Etlik CVRI (Turkey) | O Aylan
- Natl. Diag. & Res Vet Inst (Bulgaria) | R Valtchovski
- Inst. Diag. & Animal Health (Romania) | M Turcitu
- Univ. Sarajevo (Bosnia-Hercegovina) | R Velic
- Vet. Inst. Of Republika of Srpska | V Sandrac
Southeast Europe (the Balkans)

- Rabies is endemic within many countries of south east Europe
- The fox is the principal reservoir species but dog rabies cases still reported
- Few epidemiological studies reported from the region
- Lack of knowledge hampers vaccination programmes
The Balkan Peninsular
Cohort Details

<table>
<thead>
<tr>
<th>Country (Cases 2005)</th>
<th>Fox</th>
<th>Dog</th>
<th>Jackal</th>
<th>Human</th>
<th>Other</th>
<th>Not recorded</th>
<th>[Total]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia-Herzegovina (36)</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Bulgaria (8)</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Serbia & Montenegro (101)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hungary (9)</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Poland (138)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Romania (530)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Russia (3087)</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Slovak Republic (50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Turkey (193)</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>
Phylogenetic analysis of RABV sequences from Southeastern Europe
Romania
Bulgaria
Bosnia-Herzegovina
Conclusions

- Most isolates fall into the East European (EE) group of viruses
- Geography dominates isolate clustering
- Evidence for host switching
- Topography may play a significant role in preventing spread of fox-rabies
 - The Danube appears to block movement between Romania and Bulgaria
 - Such natural / artificial factors should be used to assist future vaccination campaigns
Biotypes by Country
(Geographical determinant)
Can rabies be eliminated from wildlife?

- **Wildlife rabies** can be controlled
 - Intensive culling / hormonal sterilization have failed to reduce the fox population below an endemic threshold (R_0)
 - Mass vaccination of primary reservoir
 1. Oral rabies vaccination (ORV)
 - **Within 25 years of introduction of ORV**
 1. Elimination of fox rabies in Western Europe
 - ORV is most effective with complementation
 1. Public health strategies / education
 2. Agricultural and wildlife management
 - ORV has become the pre-eminent example of a modern and innovative method of disease control among free-ranging wildlife

Rabies elimination from ‘man’s best friend’

- Estimated dog to human ratios range typically between 1:8 and 1:40
 - Dog population densities may reach several thousand per km²
 - High rate of exposure to biting dogs in developing countries
 1. Southern Asia – annual human exposure to dog bites is between 0.1 – 2% of the population
 2. >99% human rabies caused from rabid dogs
- Dog vaccination is recommended or compulsory in rabies-endemic areas
 - Dog registration
 - Commercial veterinary vaccines are pure, potent, safe, efficacious and provide long-lasting immunity (3 – 4 yrs)
 - Reduction in dog rabies will provide a concomitant reduction in human rabies

Can rabies be ‘eradicated’?

- Rabies is the most significant viral zoonosis in the world today
- Need for a ‘One Health’ approach
 - Public health
 - Veterinary
 - Economic standpoint
- Given the distribution and abundance of bats as reservoir hosts
 - Rabies is not a candidate for true eradication
- Human rabies can be eradicated
 - Eliminating exposures
 - Proper, timely application of modern PEP
- Canine rabies transmission can be eliminated
- Wildlife rabies can be controlled
 - ORV

Conclusions

- Comprehensive knowledge of rabies epidemiology in a specific region / country
 - Reservoir species
 - Other hosts
 - Virus spread across borders
- Harmonization of control efforts with bordering countries
 - Border control
 - Government support (financial backing)
- Appropriate control strategy linked to epidemiological knowledge of rabies
 - Which animals to target!
 - Vaccine type
 - Other control strategies
- Sustainability!
- “Making a paradigm shift!”
Acknowledgements

VLA, UK
Dr Nicholas Johnson
Dr Lorraine McElhinney

University of Liverpool, UK
Prof. Tom Solomon
Dr Mac Mallawa

CDC-USA
Dr Charles Rupprecht

Ghana Veterinary Services, Ghana
Dr Richard Suu-Ire

WHO-Geneva, Switzerland
Dr Marie-Paule Kieny
Dr Francois Meslin

Changchun Veterinary Institute, China
Prof. Rongliang Hu
Prof. Changchun Tu

FLI, Germany
Dr Thomas Muller
Conrad Freuling

Institut Pasteur, France
Dr Noel Tordo
Dr Herve Bourhy

IDT, Germany
Dr Ad Vos

AFSSA, France
Dr Florence Cliquet

CVRI, Turkey
Dr Orhan Aylan
Dr Hikmet Un